

Environmental product declaration

In accordance with ISO 14025 and EN15804+A2

RVK 101 / RVK 101-30

EPD-Global

Owner of the declaration:

Invisible Connections AS

Product:

RVK 101 / RVK 101-30

Declared unit:

1 pcs

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR

NPCR 013:2021 Part B for Steel and aluminium construction products

Program operator:

EPD-Global

Declaration number:

NEPD-12669-12881

Issue date:

20.10.2025

Valid to:

20.10.2030

EPD software:

LCAno EPD generator ID: 1270050

General information

Product

RVK 101 / RVK 101-30

Program operator:

EPD-Global

Post Box 5250 Majorstuen, 0303 Oslo, Norway

Phone: +47 977 22 020 web: www.epd-global.com

Declaration number:

NEPD-12669-12881

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 013:2021 Part B for Steel and aluminium construction products

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD-Global shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 pcs RVK 101 / RVK 101-30

Declared unit with option:

A1-A3, A4, A5, C1, C2, C3, C4, D

Functional unit:

Telescopic connector. Inner and outer tube made of steel.

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Global's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Global, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Global's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPD-Global's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Alexander Borg, Asplan Viak AS

(no signature required)

Owner of the declaration:

Invisible Connections AS Contact person:

Phone:

e-mail: terje@invisi.no

Manufacturer:

Invisible Connections AS

Place of production:

Invisible Connections AS

Norway

Management system:

NS-EN 1090

Organisation no:

992435194

Issue date:

20.10.2025

Valid to:

20.10.2030

Year of study:

2023

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD-Global. Approval number:

Developer of EPD: Terje Berg

Reviewer of company-specific input data and EPD: John Egil Sæther

Approved:

Håkon Hauan, CEO EPD-Global

Product

Product description:

Stair connector to be casted in concrete landings.

https://invisibleconnections.no/produkter/trapp-reposforbindelser/rvk/tss-101/

Product specification

100kN capasity

Materials	kg	%
Metal - Stainless steel	0,086	1,07
Metal - Steel	7,80	97,03
Plastic - Polyethylene (HDPE)	0,153	1,90
Total	8,04	100,00
Packaging	kg	%
Packaging - Pallet	0,19	11,14

Packaging	kg	%
Packaging - Pallet	0,19	11,14
Packaging - Paper	1,20	72,15
Packaging - Wood	0,28	16,71
Total incl. packaging	9,70	100,00

Technical data:

Certificated after NS EN 1090 and EN 1090 UK

Market:

Global

Reference service life, product

Same as building

Reference service life, building or construction works

100 years

LCA: Calculation rules

Declared unit:

1 pcs RVK 101 / RVK 101-30

Cut-off criteria:

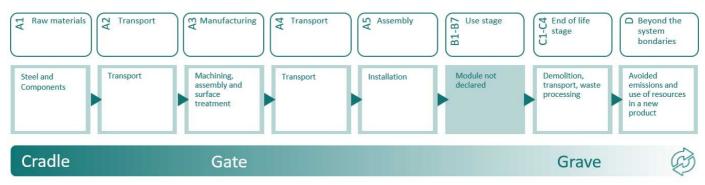
All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.


Materials	Course	Data muslitus	Veen
Materials	Source	Data quality	Year
Metal - Stainless steel	ecoinvent 3.6	Database	2019
Metal - Steel	ecoinvent 3.6	Database	2019
Metal - Steel	S-P-02241	EPD	2020
Metal - Steel	S-P-05669	EPD	2022
Packaging - Pallet	Modified ecoinvent 3.6	Database	2019
Packaging - Paper	ecoinvent 3.6	Database	2019
Packaging - Wood	ecoinvent 3.6	Database	2019
Plastic - Polyethylene (HDPE)	ecoinvent 3.6	Database	2019

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Р	roduct stag	ge		uction on stage				Use stage					End of I	ife stage	Beyond the system boundaries	
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Χ	Χ	Χ	Χ	Χ	MND	MND	MND	MND	MND	MND	MND	Χ	Χ	Χ	Χ	X

System boundary:

Additional technical information:

https://invisibleconnections.no/en

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Products are sent to the factory or building sites that makes the concrete landing. Packaging are 100% recyclabel. Or can be reused. (pallets and frames)

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km)	36,7 %	1000,00	0,043	l/tkm	43,00
Assembly (A5)	Unit	Value			
Waste, packaging, wood beam, softwood, raw, dried, u=20%, average treatment (kg) - A5, inkl. 85 km transp.	kg	0,278			
Waste, packaging, pallet, EUR wooden pallet, reusable, average treatment (kg) - A5, inkl. 85 km transp.	kg	0,1852			
Waste, packaging, kraft paper, unbleached, to average treatment (kg)	kg	1,20			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km)	36,7 %	250,00	0,043	l/tkm	10,75
Waste processing (C3)	Unit	Value			
Waste treatment per kg Polyethylene (PE), incineration with fly ash extraction (kg) - CH - C3	kg	0,153			
Materials to recycling (kg)	kg	7,08			
Disposal (C4)	Unit	Value			
Landfilling of ashes from incineration of Polypropylene (PP), process per kg ashes and residues (kg) - CH - C4	kg	0,004554			
Waste, scrap steel, to landfill (kg)	kg	0,7799			
Waste, scrap steel, for incineration (kg)	kg	0,02838			
Benefits and loads beyond the system boundaries (D)	Unit	Value			
Substitution of electricity (MJ)	MJ	0,2566			
Substitution of thermal energy, district heating, in Norway (MJ)	MJ	3,77			
Substitution of primary steel with net scrap (kg)	kg	6,26			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Enviro	nmental impact									
	Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
	GWP-total	kg CO ₂ -eq	1.81E+01	1.27E+00	2.83E+00	0	3.18E-01	4.62E-01	3.93E-03	-6.92E+00
	GWP-fossil	kg CO ₂ -eq	2.10E+01	1.27E+00	2.71E-02	0	3.18E-01	4.62E-01	3.93E-03	-6.91E+00
	GWP-biogenic	kg CO ₂ -eq	-2.85E+00	5.27E-04	2.80E+00	0	1.32E-04	3.73E-06	5.92E-06	-3.85E-03
	GWP-luluc	kg CO ₂ -eq	2.05E-02	4.53E-04	8.40E-06	0	1.13E-04	5.48E-07	7.94E-07	-3.84E-03
Ö	ODP	kg CFC11 -eq	6.05E-07	2.88E-07	5.33E-09	0	7.21E-08	3.53E-10	1.73E-09	-1.59E-03
Œ.	АР	mol H+ -eq	7.00E-02	3.66E-03	1.54E-04	0	9.14E-04	5.78E-05	3.59E-05	-3.44E-02
**	EP-FreshWater	kg P -eq	2.56E-04	1.02E-05	2.52E-07	0	2.54E-06	3.54E-08	3.48E-08	-4.26E-04
	EP-Marine	kg N -eq	1.69E-02	7.24E-04	5.71E-05	0	1.81E-04	2.77E-05	1.34E-05	-7.14E-03
-	EP-Terrestial	mol N -eq	1.83E-01	8.09E-03	6.15E-04	0	2.02E-03	3.00E-04	1.47E-04	-7.30E-02
	POCP	kg NMVOC -eq	5.21E-02	3.10E-03	1.68E-04	0	7.75E-04	7.18E-05	4.23E-05	-3.47E-02
	ADP-minerals&metals ¹	kg Sb-eq	1.06E-04	3.51E-05	5.98E-07	0	8.79E-06	1.62E-08	3.54E-08	-1.19E-04
	ADP-fossil ¹	MJ	2.48E+02	1.92E+01	3.62E-01	0	4.81E+00	3.02E-02	1.16E-01	-5.83E+01
<u>%</u>	WDP ¹	m^3	3.61E+02	1.86E+01	4.84E-01	0	4.65E+00	6.84E-02	2.64E-01	3.53E+02

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Remarks to environmental impacts

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Addition	Additional environmental impact indicators												
In	dicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D			
	PM	Disease incidence	7.75E-07	7.79E-08	2.12E-09	0	1.95E-08	2.27E-10	7.81E-10	-5.82E-07			
	IRP ²	kgBq U235 -eq	5.93E-01	8.41E-02	1.49E-03	0	2.10E-02	5.10E-05	5.01E-04	2.27E-02			
	ETP-fw ¹	CTUe	1.73E+02	1.43E+01	4.66E-01	0	3.57E+00	9.01E-02	7.11E-02	-3.86E+02			
48.* *****	HTP-c ¹	CTUh	1.10E-08	0.00E+00	2.20E-11	0	0.00E+00	1.00E-11	3.00E-12	-3.32E-08			
& D	HTP-nc ¹	CTUh	1.25E-07	1.56E-08	1.01E-09	0	3.90E-09	3.87E-10	4.80E-11	7.18E-07			
	SQP ¹	dimensionless	3.47E+02	1.35E+01	2.33E-01	0	3.36E+00	3.66E-03	4.10E-01	-6.42E+00			

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use										
	ndicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
i ji	PERE	MJ	5.58E+01	2.75E-01	6.34E-03	0	6.89E-02	8.87E-04	1.95E-03	-6.64E+00
	PERM	МЈ	2.34E+01	0.00E+00	-2.34E+01	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00
್ಕ್ಯ	PERT	МЈ	7.92E+01	2.75E-01	-2.34E+01	0	6.89E-02	8.87E-04	1.95E-03	-6.64E+00
	PENRE	МЈ	2.42E+02	1.92E+01	3.62E-01	0	4.81E+00	3.02E-02	1.16E-01	-5.82E+01
	PENRM	МЈ	6.56E+00	0.00E+00	0.00E+00	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00
I	PENRT	МЈ	2.48E+02	1.92E+01	3.62E-01	0	4.81E+00	3.02E-02	1.16E-01	-5.82E+01
	SM	kg	9.94E-01	0.00E+00	0.00E+00	0	0.00E+00	0.00E+00	1.28E-02	0.00E+00
2	RSF	МЈ	1.81E-01	9.85E-03	2.03E-04	0	2.46E-03	2.50E-05	4.12E-05	2.48E-01
	NRSF	МЈ	8.81E-02	3.52E-02	1.23E-03	0	8.81E-03	0.00E+00	7.02E-04	7.13E+00
⊗	FW	m^3	1.21E-01	2.06E-03	1.94E-04	0	5.14E-04	8.53E-05	1.36E-04	-1.69E-02

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Wa	ste									
In	dicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
ā	HWD	kg	3.06E-02	9.92E-04	0.00E+00	0	2.48E-04	0.00E+00	2.26E-02	-3.58E-02
Ū	NHWD	kg	3.03E+00	9.36E-01	1.49E+00	0	2.34E-01	0.00E+00	7.82E-01	-2.82E+00
8	RWD	kg	1.64E-03	1.31E-04	0.00E+00	0	3.28E-05	0.00E+00	4.76E-08	1.74E-05

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Eı	nd of life - Outpu	t flow									
	Indicat	tor	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
	@ D	CRU	kg	0.00E+00	0.00E+00	1.76E-01	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	&>	MFR	kg	6.71E-01	0.00E+00	1.12E+00	0	0.00E+00	7.08E+00	1.34E-02	0.00E+00
	DF	MER	kg	7.21E-03	0.00E+00	3.71E-01	0	0.00E+00	1.53E-01	3.85E-08	0.00E+00
	50	EEE	MJ	8.38E-04	0.00E+00	2.68E-01	0	0.00E+00	2.97E-01	7.87E-04	0.00E+00
	D	EET	MJ	1.27E-02	0.00E+00	4.06E+00	0	0.00E+00	4.49E+00	1.19E-02	0.00E+00

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content										
Unit	At the factory gate									
kg C	0.00E+00									
kg C	7.75E-01									
	kg C									

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Source	Amount	Unit
Electricity, Norway (kWh)	ecoinvent 3.6	24,33	g CO2-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

Additional Environmental Information

dditional environmental impact indicators required in NPCR Part A for construction products									
Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D
GWPIOBC	kg CO ₂ -eq	2.14E+01	1.27E+00	2.72E-02	0	3.18E-01	4.62E-01	3.94E-03	-1.03E+01

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012 + A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Graafland and Iversen, (2022) EPD generator for NPCR 013 Part B for Steel and Aluminum, Background information for EPD generator application and LCA data, LCA.no report number: 08.22

NPCR Part A: Construction products and services. Ver. 2.0. April 2021, EPD-Norge.

NPCR 013 Part B for Steel and Aluminium Construction Products , Ver. 4.0, 06.10.2021, EPD Norway.

© epd-global	Program operator and publisher	Phone:	+47 977 22 020
	EPD-Global	e-mail:	post@epd-norge.no
Powered by EPD-Norway	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web:	www.epd-global.com
:C	Owner of the declaration:	Phone:	
iC	Invisible Connections AS	e-mail:	terje@invisi.no
invisore connections*	Norway	web:	terje@irivisi.rio
	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
(LCA)	LCA.no AS	e-mail:	post@lca.no
	Dokka 6A, 1671 Kråkerøy, Norway	web:	www.lca.no
	Developer of EPD generator	Phone:	+47 916 50 916
(LCA)	LCA.no AS	e-mail:	post@lca.no
.no	Dokka 6A, 1671 Kråkerøy, Norway	web:	www.lca.no
ECO PLATFORM	ECO Platform	web:	www.eco-platform.org
VERIFIED	ECO Portal	web:	ECO Portal
VERIFIED			